
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 62|P a g e

Optimized Design and implementation of IEEE-754 Floating

point processor

G.Srinivasulu
1
, Dr.V.Thrimurthulu

2
, G.Rajesh

3

1
II M.Tech VLSI SD, CR Engineering College, Tirupathi, Chittoor(Dist), A.P, India,

2
Professor, Head of ECE Dept., CR Engineering College, Tirupathi, Chittoor (Dist), A.P, India,

3
Assosciate Professor,ECE Dept., CR Engineering College, Tirupathi,Chittoor(Dist), A.P,India

1
seenu893@gmail.com,

2
vtmurthy.v@gmail.com ,

3
gundlapallerajesh@gmail.com

Abstract
Inpresent a days floating point arithmetic operations are very crucial in financial applications. In DSP

applications floating point arithmetic implemented by using FFT algorithm. This paper presents optimized

design and implementation of double precision floating point processor. This processor is dynamically

configured, loaded and executed. This processor is binary compliant with the conventional microprocessor

without interlocked pipelining system (MIPS). Designed the hardware to optimize the area and delay. The

design is coded in verilogHDL at RTL and synthesized in virtex5 by using Xilinx ISE tool.

Key words: floating point; single precision; processor design

I. INTRODUCTION
Floating-point arithmetic is mostly used in lot of

areas, mainly in scientific computation; numerical

processing and signal processing (like digital filters,

FFT, image processing, etc.)[8] applications. Single-

precision and double-precision formats represented

by theIEEE-754.

By using IEEE-754 format is higher than that of

fixed point representation with the same number of

bits the range &precision of numbers that can be

represented. Arithmetic operations Implementation

for IEEE floating-point standard in hardware

becomes an important part of almost all processors.

Efficient implementation of floating-point arithmetic

operation applications are always having for high-

performance.

Due to development in VLSI technology

nowadays we haveFPGA’s with features of high

speed, more number of embedded modules and more

number of logic. These turn them suitable for

implementing more difficult applications and also we

can go for developed implementation of applications

like floating point arithmetic. The performance of

floating point arithmetic in FPGA is improved, Then

FPGA is a desirable platform for scientific and real

time applications [1].By embedding our floating

point processor we can easily increase the speed of

floating point application.

Our view is to create a generic, adaptable,

embedded floating point processor, which over

floating point applications will increase performance

and save a significant amount of FPGA real estate

when compared to implementations on current

FPGAs. With this goal of flexibility in mind, this

processor was designed so that it can be configured to

perform several useful functions. Since multiplication

and addition are two of the most widely used

arithmetic operations, these operations are included

in the ALU, these operations can be done in both in

integer and floating-point mode.

Our processor has 512 MB of data memory,256

KB of program memory,32 number of 32 bit register

file,32 bit A and B register.32 bit ALU,32 bit

PC(program counter),32 bit IR(instruction register).It

has two modes of operation floating point mode and

normal integer mode. In floating point mode

operations like adder, subtractor, multiplier and

multiply-add are performed and it also handles 5

floating point exceptions. For effective

implementation the ALU uses merged data path for

floating point addition and multiplication and

efficient algorithm for multiplier and adder design.

The design is implemented in verilogHDL and

synthesized for Xilinx virtex-5 device. Thedesign is

synthesized using Xilinx ISE tool.

II. SINGLE PRECISION FLOATING

POINT NUMBER
Single-precision floating-point format is a

computer number format that is specified in the

IEEE-754-2008standard.fig:1 shows a single

precision floating point format. Where sign bit

denotes the sign of the number and also the sign of

the mantissa as well. Exponent is an 8 bit signed

integer from -128 to 127(2’s Complement) and for 8-

bit unsigned integer from 0 to 255 which is the

accepted biased form in IEEE 754 single precision

definition. In this case an exponent with value 127

RESEARCH ARTICLE OPEN ACCESS

mailto:seenu893@gmail.com
mailto:vtmurthy.v@gmail.com
mailto:gundlapallerajesh@gmail.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 63|P a g e

represents actual zero. The true mantissa includes 23

fraction bits to the right of the binary point and an

implicit leading bit (to the left of the binary point)

with value 1 unless the exponent is stored with all

zeros. Actually the total precision is 24 bits [6] thus

only 23 fraction bits of the mantissa appear in the

memory format.

Fig. 1. IEEE 754 Double precision format where the

formula to calculate the real number represented

1 11 52

s e m

Using the IEEE 754 format is

 X= -1
s
x 1.f x 2

e-1023

III. PROCESSOR DESIGN
A. Instruction set architecture

The first step in design is choosing an efficient

Instruction Set Architecture (ISA) for our processor.

Here we use MIPSISA (instruction set

architecture).MIPS contains a load-store RISC

(Reduced Instruction Set Computer) instruction set

which contains three operands. Remaining of the

design is divided in to two parts:

• Data path: According to the program instructions

performs the data operations.

• Controller design: According to the program

instructions, controller controls the data path,

memory and I/O.

Fig. 2. Instruction set architecture

Instructions included are:

Instruction operation

LW load data from data memory to the

file register

SW The data in the file reg. is stored

to data memory

ADD Floating point addition is

performed on two operand from

the file reg. and the result is stored

back to the destination reg.

MUL Floating point multiplication is

performed on two operand from

the file reg .and the result is stored

back to the destination reg.

SUB Floating point subtraction is

performed on two operand from

the file reg.and the result is stored

back to the destination reg.

add/sub/mul Normal

addition/subtraction/multiplication

is performed on two operand from

the file reg.and the result is stored

back to the destination reg.

addi/muli/subi Normal

addition/subtraction/multiplication

is performed on two operand one

from the file reg other as an

immediate value. and the result is

stored back to the destination reg.

bne/beq Branching instructions.

jmp Unconditional control transfer

instruction.

Here the Instructions are 32 bit long, with a four

bit opcode. And my instruction set uses 3 address

instruction format. According to the Instruction

format the execution of an arithmetic or logic

instruction will be done i.e., whether we have an R-

type or I-type instruction. The 27th bit of the

instruction responsible for the modes of

operation(floating point/integer mode).In case of

floating point instruction the last three bits used to

select the rounding mode of the floating point

operation.

B. Control unit design

The control unit of the MIPS single-cycle

processor examines the instruction opcode bits

[31:26] and decodes the instruction to generate 12

control signals to be used in the data path. These

control signals and their operation are shown

intable:1.

Signal Control operation

PCen To enable the PC register.

P_memrd To read the instruction from

program memory

P_memwr To write the instructions in to

the program memory.

IRen To enable the IR register

write To write data in to the file

register.

ACCen Used to select signal for mux at

the input to the B register.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 64|P a g e

ALUfz 3 bit control signal to the ALU

which select the desired

operation to be performed by the

ALU

D_memrd To read data from data memory

D_memwr To write data in to the data

memory

memtoreg Used to select the write data to

the file register.

Dst_sel Used to select the destination

register address

Here to generate the control signal the controller

uses an FSM. Here the FSM consist of one initial

state and 3 operating states. The states are start, fetch,

decode and execute.

• START: All control signals are assigned to zero.

• FETCH: Control signals are assigned in way to

fetch the instruction from program memory. The

control signal active in this state are: PCen,

memread, IRen

• DECODE: In this state the instruction is decoded

and the data path control signals prepared for

next cycle. The control signal active in: in this

state are Ren, write, Bsel, ACCen, Ben.

• EXECUTE: In this state ALUget the data from

the file Registerfor the desired operation and the

result is send back to the destination register.

The control signal active in this state are: ALUfz,

d_memrd, d_memwr, memtoreg, dst_sel.

C. Data path design

Here the data path is based on MIPS

(microprocessor without interlocked pipeline

stages).It also utilizes the features of the Harvard

architecture (separate memory for instruction and

data).In this scheme instructions are executed in

multi clock cycles. The data path consist of 512 MB

of data memory,256 KB of program memory,32

number of 32 bit register file,32 bit A and B

register.32 bit ALU with floating point support,32 bit

PC register,32 bit IR register. To incorporate

pipelining the data path is clearly divided into three

section (fetch, decode, execute).And operation of

each section is controlled by the control signal

generated from the controller.

1) Fetch unit: The function of the instruction

fetch unit is, by using the current value of the PC

obtain an instruction from the instruction memory

and for every next instruction the PC value will

increases as shown in Figure: 3. The instruction fetch

component contains the following logic elements that

are implemented in Verilog: 16-bit program counter

(PC) register, An adder to increment the PC by one,

the instruction memory and an Instruction register.

Fig3.Fetch

2) Instruction decode unit: The main function of the

instruction decode unit is to decode the 32-bit

instruction fetched in previous state(fetch state) to

index the register file and obtain the register data

Values as seen in Figure:4 . This unit also sign

extends instruction bits [15 - 0] to 32-bit. The logic

elements implemented in Verilog include

multiplexers and a 32 bit register file,16 to 32 bit sign

extender and A & B register.

Figure4.Decode

3) Execution unit: The execution unit of the MIPS

processor contains the arithmetic logic unit (ALU)

which performs the operation determined by the

ALUfz signal in the case of arithmetic operation. The

branch address is calculated by adding the PC+1 to

the sign extended immediate field shifted left 2 bits

by a separate adder. And obtaining the address of

data memory in case of load and store instruction.

The logic elements implemented in Verilog include a

multiplexer, an adder, the ALU and the ALU consist

of data path for floating point arithmetic.fig:5 shows

the data path for execute unit and the corresponding

floating point ALU is shown in fig:6

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 65|P a g e

Figure5.Execute

IV. FLOATING POINT ALU
The proposed ALU is a single precision IEEE-

754 compliant integrated unit. It can handle basic

floating point operations like floating point addition,

subtraction, multiplication and multiply-add in

floating point mode and 23 bit nor-mal addition,

subtraction& multiplication in integer mode of

operation. The mode of operation can be indicated by

27
th

bit of instruction and if the bit is set to one then

floating point operation is performed. ALUfz control

signal from the controller select the desired ALU

operation corresponding to theinstruction. The input

to the ALU is 32 bit value from A &B register. For

floating point operation these are floating point

numbers represented in IEEE-754 format and in the

case of integer operation first 23 bit of these operand

is used as input values to the ALU.

A. Floating point addition/subtraction

As in [2] the conventional floating-point

addition/subtraction algorithm consists of five stages

exponent difference, pre-alignment,

addition/subtraction, normalization and rounding.

Given floating-point numbers and, the stages for

computing are described as follows.

1) Find exponent difference. If, swap position of

mantissas. Set larger exponent as tentative

exponent of result.

2) Prealign mantissas by shifting smaller mantissa

right by bits.

3) Add or subtract mantissas to get tentative result

for mantissa.

4) Normalization. If there are leading-zeros in the

tentative result, shift result left and decrement

exponent by the number of leading zeros. If

tentative result overflows, shift right and

increment exponent by 1 bit.

5) Round mantissa result. If it overflows due to

rounding, shift right and increment exponent by

1 bit.

B. Floating point multiplication

As in[2]in standard floating point multiplication,

six steps are required,

1) XOR the sign bits. XOR the sign bits of the

floating point numbers to give the resulting sign

bit.

2) Exponent addition. The exponents of two

floating point numbers are added using a fixed

point adder.

3) Mantissa de-normalization. The hidden bit 1 of

1.f is appended to the mantissas.

4) Mantissa multiplication. The mantissas are

multiplied using a fixed point multiplier.

5) Normalization of mantissa and exponent.

6) Rounding. Rounding the mantissa after shifting.

From the above two algorithm we can see that

floating point arithmetic require many operations.

These operations contribute to area, delay and power

consumption in the FPGA.So to optimize the design

common data path in the Multiplier and adder are

merged. Fig 6: shows the data path for a floating-

point ALU. Only the main parts of the data path are

shown for clarity.

Fig6 floating point ALU

V. ARCHITECTURE OPTIMIZATION
There are different optimization methods for

floating point ALU. We can reduce the area, delay

and power with the use of effective algorithm for the

design. One method is to merge the common

datapath.Area can be reduced by sharing resources

between datapaths.fig:6 shows example of such a

design. The floating point multiplier, adder and sub

tractor arithmetic individually require normalization,

rounding & exception handling unit [5][7]. By

sharing the normalization, rounding &exception

handling unit we can reduce the overall area by

reducing the amount of redundant resources. Another

method for optimization is use of effective algorithm

for individual component design. From table: III and

fig 7,8 we can infer that use of koggestone adder for

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 66|P a g e

mantissa addition can improve the speed. But it uses

large area compared to other adders. So when

performance is a main concern we can go for

koggestoneadder. from table:III and fig 7,8 we can

see that for area optimization Wallace tree multiplier

can be used and to improve the speed we can use

booth and Wallace tree multiplier. Another method

for optimization is effective utilization of the

resources to other application. Here 24 bit adders and

multipliers for mantissa addition and multiplication is

used for normal 24 bit addition and multiplication in

the case of integer mode of operation.

Fig 7: From synthesis of adder

Fig 8: From synthesis of multiplier

MINIMUM DELAY

multiplier Wallace tree

adder carry-ripple

MINIMUM AREA

multiplier Booth and Wallace tree

adder kogge-stone

VI. IMPLEMENTATION RESULT
The design is carried out in Verilog HDL,

synthesized and simulated using Xilinx ISE software.

The simulation is done in the Xilinx Virtex5 device

[4]. Single precision floating point adder, subtractor

and multiplier are realized. All exceptions and special

cases are handled. The 24 bit mantissa adder in the

floating point multiplier and 23 bit multiplier in the

floating point multiplier module are made

reconfigurable for integer mode of operation. All the

operations are embedded in a single module to form a

floating point ALU.With the help of thisALU single

precision floating point processor is designed. Here

each instruction takes3 cycle latency. Design is done

in a way to accommodate a 3 stage pipelining. A

simple program to add and multiply two floating

point numbers is stored in program memory and

corresponding floating point data is stored in Data

memory.fig:9 show the ISA for the program. Andthe

corresponding simulation result is shown in

fig:10.Delay and area is calculated for the processor

both for without optimized data path and with

optimized datapath.Delay and Area estimation as per

Synthesis results were 2.530ns (2.285ns logic,

0.245ns route) and 2 % of the virtex5 device area for

processor with optimized data path and 3.150ns

(2.830ns logic, 0.320ns route) and 2.5 % of the

virtex5 device area for processor without optimized

data path.

Fig.9. ISA for the program to add and Multiplication

results.

Fig. 10. Simulation result

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 67|P a g e

VII. CONCLUSION
This project mainly deals with development of a

efficient Floating Point adder, subtractor and

multiplier for ALU in Verilog. That ALU is used to

design a double precision floating point processor.

Here the processor uses MIPS and Harvard based

architecture. The whole design is performed with the

help of Xilinx and synthesized with Xilinx tools. The

experimental Result shows that area and delay of the

processor is reduced with the help of suitable

hardware design for the datapath.A simple program

to add and multiply two floating point numbers is

stored in program memory and corresponding

floating point data is stored in data memory. The

simulation is done in the Xilinx virtex5 device.

By using the IEEE-754 floating point processor,

we can improve the accuracy in representation of

floating points which are crucial in financial

applications. This project very useful in developing

countries.

REFERENCES
[1] C. H. Ho, C. W. Yu, P. H. W. Leong, W.

Luk, and S. J. E. Wilton, Domainspecific

hybrid FPGA: Architecture and floating

point applications, inProc. Int. Conf. Field

Program. Logic Appl. (FPL), 2007,pp.

196201.

[2] Yee Jern Chong and Sri Parameswaran,

Configurable Multimode Embed-ded

Floating-Point Units for FPGAs, IEEE

Transactions 2010.

[3] A. Akkas, Dual-mode quadruple precision

floating-point adder, in Proc.9th Euro micro

Conf. Digit. Syst. Des. (DSD), 2006, pp.

211220.

[4] Xilinx Inc., Virtex-5 Family Overview - LX,

LXT,and SXT Platforms,2007.

[5] P. C. Diniz and G. Govindu, Design of a

field-programmable dual-precision floating-

point arithmetic unit, in Proc. Int. Conf.

Field Program.Logic Appl. (FPL), 2006, pp.

14.

[6] ANSIWEE std 754-1985, IEEE standard for

binary Floating-point arithmetic, IEEE New

York (1985).

[7] C.W. Yu, J. Lamoureux, S.J.E. Wilton,

P.H.W. Leong and W. Luk.TheCoarse-

Grained/Fine- Grained Logic Interface with

Embedded Floating-Point Arithmetic Units.

International Journal of Reconfiguring,

2008, Article ID 736203, 10 pages, 2008.

[8] Earl E. Swartzlander Jr.,andHani H.M.

Saleh, FFT Implementation with Fused

Floating-Point Operations, IEEE

Transactions on computers, vol.61 no.2,

february 2012.

AUTHORS
Gollasrinivasulu received his

B.Tech degree in Electronics &

Communication Engineering from

Shree Institute of Technical

education, Tirupati (A.P), India, in

the year 2012. Currently pursuing

his M.Tech degree in VLSI System

Design at Chadalawada

Ramanamma Engineering College, Tirupati(A.P),

India.. His area of research Includes Low power

VLSI design.

Dr.V.Thrimurthulu M.E., Ph.D.,

MIETE., MISTE Professor & Head

of ECE Dept. He received his

Graduation in Electronics &

Communication Engineering

AMIETE in 1994 from Institute of

Electronics & Telecommunication

Engineering, New Delhi, Post Graduation in

Engineering M.E specialization in Microwaves and

Radar Engineering in the year Feb, 2003, from

University College of Engineering, Osmania

university,Hyderabad.,and his Doctorate in

philosophyPh.D from central university in the

year2012.He has done research work on Ad-hoc

networks. He has Published 20+ papers in Various

National & International Journals.

Gundlapalle Rajesh is currently

working as associate professor in

the department of elcetronics&

communication engineering at

chadalawada ramanamma

engineering college, near tirupati,

india. He has nearly 11 years of

teaching experience. His extensive education

includes b.tech. From jawaharlal technological

university, hyderabad,india, plus m.e. in satyabama

university, chennai, india. In addition to this, he is

making research in the field of medical image

processing.

